Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem

Wstęga Möbiusa – kształt, który doskonale znamy (z dzieciństwa z zabaw, z dorosłości z logotypów firm i idei) – przez 50 lat stanowiła nie lada zagadkę dla inżynierów, matematyków i fizyków. Choć wydawało się, że można było ją robić dowolnie małą, miała swoje ograniczenia. Złe dobranie jej długości i szerokości powodowało, że się zrywała i nie dawała zakrzywić. To duży problem, bo wstęgę dość często można spotkać w automatyce czy urządzeniach opartych na pracy silnika.
Wstęga Mobiusa Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem
Wstęga Mobiusa / Wikipedia CC BY-SA 3,0 David Benbennick

Sama wstęga to szczególna powierzchnia odkryta przez matematyków dopiero w 1858 roku (m.in. Augusta Möbiusa, stąd jej nazwa) – jednostronna, choć istniejąca w jak najbardziej trójwymiarowym świecie. W naukowym żargonie to dwuwymiarowa zwarta rozmaitość topologiczna nieorientowalna z brzegiem, co oznacza, że nie ma na niej pojęcia „wewnątrz”, „na zewnątrz”, „na górze” lub „na dole” kształtu.

Wstęga popularna w przemyśle

Wstęga Möbiusa ma tylko jedną powierzchnię, co kłóci się ze zdrowym rozsądkiem. Ale łatwo to sprawdzić – rysując linię na jej powierzchni, prędzej czy później trafimy ołówkiem na początek linii. Jej model można zrobić, sklejając taśmę (na przykład papierową) końcami przy odwróceniu jednego z końców o 180 stopni względem drugiego. Proste? W praktyce tak, ale jak dokładnie opisać taką jak najbardziej przestrzenną wstęgę, na której znajduje się tylko jedna – po sklejeniu – nieskończona płaszczyzna?

Jej kształt zachwycał już od pierwszych tygodni jej odkrycia – dzisiaj znajdziemy ją w symbolu recyklingu, w logotypie Międzynarodówki Humanistycznej czy w symbolu nieskończoności (związanym z kształtem wstęgi wyłącznie konicydentalnie) oraz w logo sieciowego dysku Google tworzącym niekończącą się pętlę, tym razem w formie trójkąta. Z kształtu korzystają również organizacje pozarządowe – wszystkie różowe, niebieskie, białe czy czarne wstążki symbolizujące walkę o generalnie lepszy ludzki byt są właśnie wstęgami Möbiusa.
Jeśli zaczniemy się nią bawić, pojawiają się kolejne zaskakujące właściwości kształtu. Rozcięta wzdłuż nie spowoduje, że z jednej otrzymamy dwie podobne wstęgi – ta, którą trzymamy w ręku, będzie po prostu dwa razy dłuższa i podwójnie skręcona, choć wciąż z jedną płaszczyzną.

Jeśli przetniemy taśmę skręconą we wstęgę skręconą o 360 stopni (zamiast pierwotnych 180) otrzymamy dwa kręgi połączone, jak ogniwa w łańcuchu.

Poza wzbudzaniem zachwytu bawiących się nią wstęga niemal natychmiast znalazła zastosowanie w mechanice – tam, gdzie dwa koła połączone są taśmą, zastąpienie jej wstęgą Möbiusa zwielokrotnia trwałość taśmy i powoduje jej wolniejsze zużycie z obu naraz, a nie tylko z jednej strony. Stąd chętnie korzysta się z niej wszędzie tam, gdzie koła zamachowe silników potrzebują taśmowego przeniesienia napędu. Zdarza się znaleźć to rozwiązanie zamiast zębatek w rzadkich i przez to drogich szwajcarskich zegarkach. Rzadkich, bo specjaliści od mikromechaniki szybko zorientowali się, że tego kształtu nie da się pomniejszać w nieskończoność. Przy coraz mniejszej długości przy zachowaniu szerokości wstęgi okazuje się, że kształt się zrywa. Od półwiecza matematycznym problemem było znalezienie proporcji, przy jakich można tego uniknąć.

Po latach liczenia

Rozwiązanie zaproponował matematyk z Brown University Richard Schwartz, dzisiaj przyznający się, że od problemu uzależnił się, nie mogąc pracować nad czymkolwiek innym.

„Przez lata próbowałem rozwiązać ten problem i w 2021 r. opublikowałem artykuł przedstawiający obiecujące podejście, które jednak ostatecznie okazało się niewystarczające” – wspomina dzisiaj na łamach naukowych czasopism. Niedawno zaczął więc eksperymentować ze zgniataniem papierowych pasków w nadziei, że kształt 2D będzie łatwiejszy do matematycznego rozwiązania. Kiedy jednak rozciął jedną z tych pętli pod kątem (co było konieczne do rozwiązania problemu optymalizacji), zobaczył coś, czego się nie spodziewał… Dwuwymiarowy papier nie wyglądał jak równoległobok, jak opisał w swojej pierwszej pracy. Był to raczej trapez – kształt o czterech prostych bokach, z których tylko dwa są do siebie równoległe.

Geometria złożonych kształtów pozwoliła na określenie, że stosunek długości do szerokości wstęgi powinien być większy od pierwiastka kwadratowego z trzech (czyli około 1,73).

W ciągu wielu nieprzespanych nocy i przy pomocy kilku kolegów – jak wspomina Schwartz – matematyk poprawił swoje wcześniejsze błędy i doszedł do eleganckiego rozwiązania z pierwiastkiem z trzech, czego przez pół wieku nie dopatrzyli się inni matematycy.
Co zmieni w naszym życiu niedawne odkrycie matematyków? Przeciętny człowiek raczej różnicy nie dostrzeże – wstęga Möbiusa dalej pozostanie fascynującą ciekawostką, która pewnie trafi jeszcze na niejedno logo. Jednak w z pewnością znalezienie odpowiednich proporcji ułatwi tysiącom producentów, projektantów i inżynierów planowanie kolejnych linii produkcyjnych w fabrykach dostarczających nam samochody czy sprzęt AGD. Z pewnością wpłynie na lepsze wykorzystanie materiałów i pośrednio na środowisko naszej planety. Co ciekawe, matematyk, który znalazł rozwiązanie, nie zarobi na nim ani centa. Zgodnie z międzynarodowym prawem nie można opatentować prawa natury ani zasad matematyki. Richard Schwartz może liczyć wyłącznie na zasłużone miejsce w akademickich podręcznikach matematyki.

Tekst pochodzi z 39 (1809) numeru „Tygodnika Solidarność”.


 

POLECANE
Jest oświadczenie Krystyny Pawłowicz ws. odejścia z Trybunału Konstytucyjnego z ostatniej chwili
Jest oświadczenie Krystyny Pawłowicz ws. odejścia z Trybunału Konstytucyjnego

Krystyny Pawłowicz wydała oświadczenie wyjaśniające powody jej wcześniejszego odejścia z urzędu sędziego Trybunału Konstytucyjnego. Sędzia skarży się m.in. na akty nienawiści, które spotkały TK i ją osobicie.

Szaleństwo postępuje. KE przedstawiła nowy cel klimatyczny dla UE z ostatniej chwili
Szaleństwo postępuje. KE przedstawiła nowy cel klimatyczny dla UE

Komisja Europejska zaproponowała w środę wyznaczenie celu klimatycznego na 2040 r. Zgodnie z propozycją emisje gazów cieplarnianych powinny wówczas wynieść o 90 proc. mniej względem poziomu z 1990 r. Pomocą w dojściu do celu ma być możliwość wliczania projektów sfinansowanych w krajach trzecich.

Ważny komunikat dla mieszkańców Gdańska z ostatniej chwili
Ważny komunikat dla mieszkańców Gdańska

Od poniedziałku 7 lipca ruszają prace modernizacyjne na dwóch ważnych przejazdach torowo-drogowych w Gdańsku: na Błędniku oraz na skrzyżowaniu ulic Kołobrzeska–Chłopska. Remonty oznaczają całkowite zamknięcie tych miejsc zarówno dla samochodów, jak i tramwajów. Utrudnienia potrwają do 20 lipca.

Pilny komunikat polskiej ambasady w Portugalii. Turyści muszą być gotowi na ewakuację z ostatniej chwili
Pilny komunikat polskiej ambasady w Portugalii. Turyści muszą być gotowi na ewakuację

Polska ambasada ostrzega turystów: "W Portugalii panują rekordowe temperatury. Istnieje bardzo wysokie ryzyko wystąpienia samoistnych pożarów. Przestrzegaj zaleceń lokalnych służb, w tym dot. procedur ewakuacyjnych"

Jest ruch TK ws. sędzi Krystyny Pawłowicz z ostatniej chwili
Jest ruch TK ws. sędzi Krystyny Pawłowicz

Zgromadzenie Ogólne Sędziów Trybunału Konstytucyjnego podjęło uchwałę o przeniesieniu w stan spoczynku sędzi TK Krystyny Pawłowicz z dniem 5 grudnia br. - wynika z pisma, do którego w środę dotarła Polska Agencja Prasowa. Sędzia Pawłowicz nie potwierdziła tej informacji.

Będzie nowy minister sprawiedliwości? Padło zaskakujące nazwisko z ostatniej chwili
Będzie nowy minister sprawiedliwości? Padło zaskakujące nazwisko

Zaskakujące informacje nt. zmiany na stanowisku ministra sprawiedliwości podał Leszek Kraskowski, dziennikarz Reporterów Online, który przedstawił ustalenia dotyczące afery Polnordu i wątków posła Romana Giertycha.

Całkowite zamknięcie Heathrow. Nowe informacje z ostatniej chwili
Całkowite zamknięcie Heathrow. Nowe informacje

To jedna z największych awarii tego typu w historii. Brytyjskie władze ujawniły, co było powodem paraliżu lotniska Heathrow, do którego doszło w marcu tego roku.

Poseł KO: Roman Giertych działa na niekorzyść państwa polskiego Wiadomości
Poseł KO: Roman Giertych działa na niekorzyść państwa polskiego

Poseł Jolanta Niezgodzka wypowiedziała się na temat swojego kolegi z klubu poselskiego KO Romana Giertycha. – Działa na niekorzyść państwa polskiego i demokracji – stwierdziła. Z drugiej strony oznajmiła, że Donald Tusk nie jest w stanie zakazać mu wypowiadania się w taki czy inny sposób. Giertych nie uznał wczoraj decyzji SN ws. ważności wyborów, a sędziów nazwał "przebierańcami" i "uzurpatorami".

Na plac Zbawiciela wróci „tęcza” LGBT z ostatniej chwili
Na plac Zbawiciela wróci „tęcza” LGBT

Wygląda na to, że niedługo na plac Zbawiciela w Warszawie wróci instalacja kojarzona z LGBT. Projekt „Nowa Tęcza”, oficjalnie nazwany „Łukiem LGBT+”, został wybrany do realizacji w ramach Budżetu Obywatelskiego 2026. To czwarta próba przywrócenia tego symbolu – tym razem zakończona sukcesem.

Ważny komunikat dla mieszkańców województwa pomorskiego Wiadomości
Ważny komunikat dla mieszkańców województwa pomorskiego

Mieszkańców województwa pomorskiego i niektórych turystów, którzy zawitają w te rejony, czekają istotne zmiany. Od 4 sierpnia bilety okresowe komunikacji miejskiej w Trójmieście i metropolii pomorskiej będzie można kupić tylko za pomocą nowego systemu dystrybucji.

REKLAMA

Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem

Wstęga Möbiusa – kształt, który doskonale znamy (z dzieciństwa z zabaw, z dorosłości z logotypów firm i idei) – przez 50 lat stanowiła nie lada zagadkę dla inżynierów, matematyków i fizyków. Choć wydawało się, że można było ją robić dowolnie małą, miała swoje ograniczenia. Złe dobranie jej długości i szerokości powodowało, że się zrywała i nie dawała zakrzywić. To duży problem, bo wstęgę dość często można spotkać w automatyce czy urządzeniach opartych na pracy silnika.
Wstęga Mobiusa Istnienie Wstęgi Möbiusa kłóci się ze zdrowym rozsądkiem
Wstęga Mobiusa / Wikipedia CC BY-SA 3,0 David Benbennick

Sama wstęga to szczególna powierzchnia odkryta przez matematyków dopiero w 1858 roku (m.in. Augusta Möbiusa, stąd jej nazwa) – jednostronna, choć istniejąca w jak najbardziej trójwymiarowym świecie. W naukowym żargonie to dwuwymiarowa zwarta rozmaitość topologiczna nieorientowalna z brzegiem, co oznacza, że nie ma na niej pojęcia „wewnątrz”, „na zewnątrz”, „na górze” lub „na dole” kształtu.

Wstęga popularna w przemyśle

Wstęga Möbiusa ma tylko jedną powierzchnię, co kłóci się ze zdrowym rozsądkiem. Ale łatwo to sprawdzić – rysując linię na jej powierzchni, prędzej czy później trafimy ołówkiem na początek linii. Jej model można zrobić, sklejając taśmę (na przykład papierową) końcami przy odwróceniu jednego z końców o 180 stopni względem drugiego. Proste? W praktyce tak, ale jak dokładnie opisać taką jak najbardziej przestrzenną wstęgę, na której znajduje się tylko jedna – po sklejeniu – nieskończona płaszczyzna?

Jej kształt zachwycał już od pierwszych tygodni jej odkrycia – dzisiaj znajdziemy ją w symbolu recyklingu, w logotypie Międzynarodówki Humanistycznej czy w symbolu nieskończoności (związanym z kształtem wstęgi wyłącznie konicydentalnie) oraz w logo sieciowego dysku Google tworzącym niekończącą się pętlę, tym razem w formie trójkąta. Z kształtu korzystają również organizacje pozarządowe – wszystkie różowe, niebieskie, białe czy czarne wstążki symbolizujące walkę o generalnie lepszy ludzki byt są właśnie wstęgami Möbiusa.
Jeśli zaczniemy się nią bawić, pojawiają się kolejne zaskakujące właściwości kształtu. Rozcięta wzdłuż nie spowoduje, że z jednej otrzymamy dwie podobne wstęgi – ta, którą trzymamy w ręku, będzie po prostu dwa razy dłuższa i podwójnie skręcona, choć wciąż z jedną płaszczyzną.

Jeśli przetniemy taśmę skręconą we wstęgę skręconą o 360 stopni (zamiast pierwotnych 180) otrzymamy dwa kręgi połączone, jak ogniwa w łańcuchu.

Poza wzbudzaniem zachwytu bawiących się nią wstęga niemal natychmiast znalazła zastosowanie w mechanice – tam, gdzie dwa koła połączone są taśmą, zastąpienie jej wstęgą Möbiusa zwielokrotnia trwałość taśmy i powoduje jej wolniejsze zużycie z obu naraz, a nie tylko z jednej strony. Stąd chętnie korzysta się z niej wszędzie tam, gdzie koła zamachowe silników potrzebują taśmowego przeniesienia napędu. Zdarza się znaleźć to rozwiązanie zamiast zębatek w rzadkich i przez to drogich szwajcarskich zegarkach. Rzadkich, bo specjaliści od mikromechaniki szybko zorientowali się, że tego kształtu nie da się pomniejszać w nieskończoność. Przy coraz mniejszej długości przy zachowaniu szerokości wstęgi okazuje się, że kształt się zrywa. Od półwiecza matematycznym problemem było znalezienie proporcji, przy jakich można tego uniknąć.

Po latach liczenia

Rozwiązanie zaproponował matematyk z Brown University Richard Schwartz, dzisiaj przyznający się, że od problemu uzależnił się, nie mogąc pracować nad czymkolwiek innym.

„Przez lata próbowałem rozwiązać ten problem i w 2021 r. opublikowałem artykuł przedstawiający obiecujące podejście, które jednak ostatecznie okazało się niewystarczające” – wspomina dzisiaj na łamach naukowych czasopism. Niedawno zaczął więc eksperymentować ze zgniataniem papierowych pasków w nadziei, że kształt 2D będzie łatwiejszy do matematycznego rozwiązania. Kiedy jednak rozciął jedną z tych pętli pod kątem (co było konieczne do rozwiązania problemu optymalizacji), zobaczył coś, czego się nie spodziewał… Dwuwymiarowy papier nie wyglądał jak równoległobok, jak opisał w swojej pierwszej pracy. Był to raczej trapez – kształt o czterech prostych bokach, z których tylko dwa są do siebie równoległe.

Geometria złożonych kształtów pozwoliła na określenie, że stosunek długości do szerokości wstęgi powinien być większy od pierwiastka kwadratowego z trzech (czyli około 1,73).

W ciągu wielu nieprzespanych nocy i przy pomocy kilku kolegów – jak wspomina Schwartz – matematyk poprawił swoje wcześniejsze błędy i doszedł do eleganckiego rozwiązania z pierwiastkiem z trzech, czego przez pół wieku nie dopatrzyli się inni matematycy.
Co zmieni w naszym życiu niedawne odkrycie matematyków? Przeciętny człowiek raczej różnicy nie dostrzeże – wstęga Möbiusa dalej pozostanie fascynującą ciekawostką, która pewnie trafi jeszcze na niejedno logo. Jednak w z pewnością znalezienie odpowiednich proporcji ułatwi tysiącom producentów, projektantów i inżynierów planowanie kolejnych linii produkcyjnych w fabrykach dostarczających nam samochody czy sprzęt AGD. Z pewnością wpłynie na lepsze wykorzystanie materiałów i pośrednio na środowisko naszej planety. Co ciekawe, matematyk, który znalazł rozwiązanie, nie zarobi na nim ani centa. Zgodnie z międzynarodowym prawem nie można opatentować prawa natury ani zasad matematyki. Richard Schwartz może liczyć wyłącznie na zasłużone miejsce w akademickich podręcznikach matematyki.

Tekst pochodzi z 39 (1809) numeru „Tygodnika Solidarność”.



 

Polecane
Emerytury
Stażowe